Absolute discounting smoothing example

A. Absolute Discounting With Smoothing where is a number of different existing sequences with the first word in the sequence . is discount value chosen in interval.Probability iscomputedasa standardunigram probability For computing Kneser–Ney probabilities, the following dis-count is used: (1) as suggested in [2]. B. Kneser–Ney Smoothing Sum of Absolute Deviation = 129.5+216.5+5.2 = 351.2 . MAD = 351.2/3 = 117.1 . Hence, the 3-mth weighted moving average has the lowest MAD and is the best forecast method among the three. Control limits for a range of MADs (Pg.450 Exhibit 11.11) When forecast errors occur in a normally distributed pattern, the ratio of the mean absolute deviation to the standard deviation is 2 to 1, or 2 x MAD = 1 standard deviation. True MAD statistics can be used to generate tracking signals.

Instagram apk4fun

Number 3 printable

  • Jan 25, 2011 · Exponential Smoothing Forecaset with a = .3 Sign up for The SCM Professional Newsletter Valuable supply chain research and the latest industry news, delivered free to your inbox. nTo evaluate N -grams we often use an intrinsic evaluation, an approximation called perplexity. nBut perplexity is a poor approximation unless the test data looks just like the training data. nSo is generally only useful in pilot experiments (generally is not sufficient to publish) nBut is helpful to think about.
  • When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). Exponential Smoothing Calculator. More about the Exponential Smoothing Forecasts so you can get a better understanding of the outcome that will be provided by this solver. . The idea behind Exponential Smoothing for making forecasts consists of estimating the data value of certain period based on the previous data value as well as the previous forecast, so that to attempt to correct for the ...
  • A key issue in exponential smoothing is the choice of the values of the smoothing constants used. One approach that is becoming increasingly popular in introductory management science and operations management textbooks is the use of Solver, an Excel-based non-linear optimizer, to
  • Exponential Smoothing Calculator. More about the Exponential Smoothing Forecasts so you can get a better understanding of the outcome that will be provided by this solver. . The idea behind Exponential Smoothing for making forecasts consists of estimating the data value of certain period based on the previous data value as well as the previous forecast, so that to attempt to correct for the ...
  • Apr 17, 2017 · Exponential smoothing is a method of finding patterns in time series, which can be used to make forecasts. In its simple form, exponential smoothing is a weighted moving average: each smoothed value is a weighted average of all past time series values (with weights decreasing exponentially from the most recent to the oldest values). In […] Related exercise sets:Forecasting: Time Series ...
  • The following describes the 3-step process of performing exponential smoothing of time-series data in Excel: Step 1 – Graph the Original Data in a Time-Series Plot The line chart is the most commonly-used Excel chart to graph time-series data. Mar 20, 2019 · For now, let's focus on a liner forecast example. Linear forecast formulas. Suppose you have the sales data for the previous year and want to predict this year sales. With just one cycle of historical data, Excel cannot identify a seasonality pattern, therefore exponential smoothing is not an option.
  • Abbreviated as MAD, Mean absolute Deviation has four types of deviations that is derived by central tendency, mean median and mode and standard deviation. Mean absolute deviation is however best used as it is more accurate and easy to use in real life situations. When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). Feb 01, 2013 · Video tutorial of forecasting using exponential smoothing

For example, if you have monthly data beginning with March, you would enter a ‘3’ here. First Year Specify the first year of the series. This value is used to format the reports and plots. Smoothing Constant Search Options Search Method This option specifies whether a search is conducted for the best values of the smoothing constants and ... Package ‘KernSmooth’ October 15, 2019 Priority recommended Version 2.23-16 Date 2019-10-15 Title Functions for Kernel Smoothing Supporting Wand & Jones (1995) Depends R (>= 2.5.0), stats Suggests MASS Description Functions for kernel smoothing (and density estimation) corresponding to the book: Wand, M.P. and Jones, M.C. (1995) ``Kernel ...

Sep 21, 2016 · In the following code, I'm trying to compute the probability of a tri-gram according to Knesr-Kney smoothing method based on fixed discount. I go through the important papers describing Knesr-Kney ... The following describes the 3-step process of performing exponential smoothing of time-series data in Excel: Step 1 – Graph the Original Data in a Time-Series Plot The line chart is the most commonly-used Excel chart to graph time-series data.

Example: 3-Gram Counts for trigrams and estimated word probabilities the green (total: 1748) word c. prob. paper 801 0.458 group 640 0.367 light 110 0.063 The Data_PartitionTS worksheet is inserted to the right of the Data worksheet. Click the Data_PartitionTS worksheet, then on the XLMiner ribbon, from the Time Series tab, select Smoothing - Double Exponential to open the Double Exponential Smoothing dialog. Month is already selected as the Time variable. Kneser-Ney is very creative method to overcome this bug by smoothing. It's an extension of absolute discounting with a clever way of constructing the lower-order (backoff) model. The idea behind that is simple: the lower-order model is significant only when count is small or zero in the higher-order model, and so should be optimized for that ... An Investigation of Dirichlet Prior Smoothing’s Performance Advantage Mark D. Smucker, James Allan Center for Intelligent Information Retrieval Department of Computer Science University of Massachusetts Amherst, MA 01003 {smucker,allan}@cs.umass.edu ABSTRACT In the language modeling approach to information retrieval, Dirichlet prior smoothing ...

Smoothing. This sketch reads repeatedly from an analog input, calculating a running average and printing it to the computer. This example is useful for smoothing out the values from jumpy or erratic sensors, and also demonstrates the use of arrays to store data. When choosing smoothing parameters in exponential smoothing, the choice can be made by either. minimizing the sum of squared one-step-ahead forecast errors or minimizing the sum of the absolute one-. step-ahead forecast errors. In this article, the resulting forecast accuracy is used to compare these two.

For example, manufacturing must plan production on a day to day basis to meet customer orders, while purchasing needs to know how to align supplier deliveries with the production schedules. .

Kneser–Ney smoothing is a method primarily used to calculate the probability distribution of n-grams in a document based on their histories. It is widely considered the most effective method of smoothing due to its use of absolute discounting by subtracting a fixed value from the probability's lower order terms to omit n -grams with lower frequencies.

An Investigation of Dirichlet Prior Smoothing’s Performance Advantage Mark D. Smucker, James Allan Center for Intelligent Information Retrieval Department of Computer Science University of Massachusetts Amherst, MA 01003 {smucker,allan}@cs.umass.edu ABSTRACT In the language modeling approach to information retrieval, Dirichlet prior smoothing ... For example, if you have monthly data beginning with March, you would enter a ‘3’ here. First Year Specify the first year of the series. This value is used to format the reports and plots. Smoothing Constant Search Options Search Method This option specifies whether a search is conducted for the best values of the smoothing constants and ...

For example, manufacturing must plan production on a day to day basis to meet customer orders, while purchasing needs to know how to align supplier deliveries with the production schedules. Globalization Institute. The Federal Reserve Bank of Dallas established the Globalization Institute in 2007 for the purpose of better understanding how the process of deepening economic integration between the countries of the world, or globalization, alters the environment in which U.S. monetary policy decisions are made. Sep 21, 2016 · In the following code, I'm trying to compute the probability of a tri-gram according to Knesr-Kney smoothing method based on fixed discount. I go through the important papers describing Knesr-Kney ...

Sum of Absolute Deviation = 129.5+216.5+5.2 = 351.2 . MAD = 351.2/3 = 117.1 . Hence, the 3-mth weighted moving average has the lowest MAD and is the best forecast method among the three. Control limits for a range of MADs (Pg.450 Exhibit 11.11) Jul 09, 2015 · This feature is not available right now. Please try again later. Ricardian Equivalence¶. Robert Barro; Ricardian equivalence implies that the timing of taxes is irrelevant on household consumption choices. A change in current taxes, exactly offset in present-value terms by an equal and opposite change in future taxes will have no effect on the optimal choices of \(C_1\) and \(C_2\).

Kneser-Ney Smoothing Currently most popular smoothing method Combines { absolute discounting { considers diversity of predicted words for back-o { considers diversity of histories for lower order n-gram models { interpolated version: always add in back-o probabilities PK EMNLP 17 January 2008 21 Perplexity for di erent language models The moving average and exponential smoothing techniques are both fair examples of methods to use to help forecast demand. To unlock this lesson you must be a Study.com Member. Create your account Using Smoothing Techniques to Improve the Performance of Hidden Markov’s Models by Sweatha Boodidhi Dr. Kazem Taghva, Examination committee Chair Professor of Computer Science University Of Nevada Las Vegas The result of training a HMM using supervised training is estimated probabilities for emissions and transitions. Calculate the absolute deviation from the mean by taking the mean average, 6, and finding the difference between the mean average and the sample. This number is always stated as a positive number. For example, the first sample, 2, has an absolute deviation of 4, which is its difference from the mean average of 6.

Simple Exponential Smoothing + SA Linear Exponential Smoothing + SA SES model with alpha=0.48 yields realistic increases in confidence interval width and RMSE = 1.63. Average age of forecasts in an SES model is 1/alpha, which is around 2 in this case, the same as in the best SMA model. Jan 25, 2011 · Exponential Smoothing Forecaset with a = .3 Sign up for The SCM Professional Newsletter Valuable supply chain research and the latest industry news, delivered free to your inbox.

Jul 30, 2019 · Kneser-Ney Smoothing: If we look at the table of good Turing carefully, we can see that the good Turing c of seen values are the actual negative of some value ranging (0.7-0.8). So Kneser-ney smoothing saves ourselves some time and subtract 0.75, and this is called Absolute Discounting Interpolation. This example teaches you how to apply exponential smoothing to a time series in Excel. Exponential smoothing is used to smooth out irregularities (peaks and valleys) to easily recognize trends. 1. First, let's take a look at our time series. Jul 09, 2015 · This feature is not available right now. Please try again later.

When forecast errors occur in a normally distributed pattern, the ratio of the mean absolute deviation to the standard deviation is 2 to 1, or 2 x MAD = 1 standard deviation. True MAD statistics can be used to generate tracking signals. p 507 Heavy sales of umbrellas during a rain storm is an example of which of from OPER 3100 at University of North Carolina, Charlotte ... mean absolute deviation ... Smoothing ! Need better estimators than MLE for rare events ! Approach – Somewhat decrease the probability of previously seen events, so that there is a little bit of probability mass left over for previously unseen events » Smoothing » Discounting methods Add-one smoothing ! Add one to all of the counts before normalizing

How to operate drone remote

Can i play pes 2020 mobile offline

  • Examples of smoothing. A simple example of smoothing is shown in Figure 4. The left half of this signal is a noisy peak. The right half is the same peak after undergoing a triangular smoothing algorithm. The noise is greatly reduced while the peak itself is hardly changed.
  • Apr 17, 2017 · Exponential smoothing is a method of finding patterns in time series, which can be used to make forecasts. In its simple form, exponential smoothing is a weighted moving average: each smoothed value is a weighted average of all past time series values (with weights decreasing exponentially from the most recent to the oldest values). In […] Related exercise sets:Forecasting: Time Series ... For example, manufacturing must plan production on a day to day basis to meet customer orders, while purchasing needs to know how to align supplier deliveries with the production schedules. Blur examples Blur examples 0 Pixel offset coefficient 0.3 original 8 filtered 4 8 4 impulse edge 0 Pixel offset coefficient 0.3 original 8 filtered 2.4 Smoothing with box filter revisited Smoothing with an average actually doesn’t compare at all well with a defocused lens Most obvious difference is that a single point of
  • Jan 18, 2014 · This smoothing method is most commonly applied in an interpolated form, 1 and this is the form that I’ll present today. Kneser-Ney evolved from absolute-discounting interpolation, which makes use of both higher-order (i.e., higher- n) and lower-order language models, reallocating some probability mass from 4-grams... b. Use exponential smoothing with smoothing parameter α = 0.5 to compute the demand forecast for January (Period 13). c. Paulette believes that there is an upward trend in the demand. Use trend-adjusted exponential smoothing with smoothing parameter α = 0.5 and trend parameter β = 0.3 to compute the demand forecast for January (Period 13). d.
  • CS 4650/7650: Natural Language Processing Language Modeling (2) Diyi Yang 1 Many slides from Dan Jurafskyand Jason Esiner .
  • It might be back to the Kneser–Ney smoothing (which is used absolute discounting). And you can find it in Kneser-Ney probability distribution using the following code as an example (from this post): So, if you take your absolute discounting model and instead of unigram distribution have these nice distribution you will get Kneser-Ney smoothing. Awesome. We have just covered several smoothing techniques from simple, like, Add-one smoothing to really advanced techniques like, Kneser-Ney smoothing. Ambrosia greek mythology
  • nTo evaluate N -grams we often use an intrinsic evaluation, an approximation called perplexity. nBut perplexity is a poor approximation unless the test data looks just like the training data. nSo is generally only useful in pilot experiments (generally is not sufficient to publish) nBut is helpful to think about. @user3639557 yes, but I don't know why it's 0.4 and why in the trigram example, they don't use this discount. – user3448806 Mar 5 '16 at 10:04 it's pretty arbitrary, that's why they refer to it as stupid-backoff. read the paper cited in the following answer. – user3639557 Mar 5 '16 at 11:13 $\begingroup$ When using laplace smoothing with naive bayes, do I have to add the value 1 to all my probabilities, or just probabilities with the value of 0? $\endgroup$ – link Apr 9 '17 at 22:50 $\begingroup$ Yes I read your question but it doesn't make sense as written. $\endgroup$ – Michael R. Chernick Apr 9 '17 at 22:52
  • Exponential Smoothing with an Adaptive Response Rate D. W. TRIGG and A. G. LEACH Kodak Ltd. A modification is proposed to forecasting systems employing exponential smoothing whereby the response rate is varied and made to depend on the value of a tracking signal., In a simple system, this is equivalent to varying oz the 4. Interpreting entropy. In calculating entropy, we use log (base 2) because this supports the interpretation of the entropy as the number of binary bits needed to encode the string using an information-theoretically optimal encoding, which uses short bitstrings for common words and longer ones for less common words. . 

Football widgets

For example, manufacturing must plan production on a day to day basis to meet customer orders, while purchasing needs to know how to align supplier deliveries with the production schedules. that absolute discounting is a good approximation to the optimal discount. Finally, a different approach by Goodman (2004) showed that back-off Kneser-Ney is similar to a maximum-entropy model with exponential priors. We will give a new interpretation of interpolated Kneser-Ney as an approximate inference method in a Bayesian model.

Exponential Smoothing Calculator. More about the Exponential Smoothing Forecasts so you can get a better understanding of the outcome that will be provided by this solver. . The idea behind Exponential Smoothing for making forecasts consists of estimating the data value of certain period based on the previous data value as well as the previous forecast, so that to attempt to correct for the ... model. For example, Jelinek-Mercer, Dirichlet, Absolute discount (Zhai and Lafferty, 2001) and Two-stage smoothing (Zhai and Lafferty, 2002) are all based on this strategy. In document clustering, TF-IDF score is often used as the dimension values of document vectors. The effect of TF-IDF scheme is roughly equivalent to the background model smoothing.

Employee call out log

Absolute beginners might bene t from reading [17], which provides an elementary introduction to the eld, before the present tutorial. 1.2 Organisation of the tutorial The rest of this paper is organised as follows. In Section 2, we present hidden Markov models and the associated Bayesian recursions for the ltering and smoothing distributions. Jul 09, 2015 · This feature is not available right now. Please try again later.

Bell smoothing. 2. Expected Kneser-Ney Smoothing In this section we introduce KN smoothing on expected counts, closely following the material from [1]. In addition, in [10] we have published an in-depth derivation of the formulae below. First, recall the standard KN smoothing as a version of absolute discounting turning n-gram counts into: ~c ... A. Absolute Discounting With Smoothing where is a number of different existing sequences with the first word in the sequence . is discount value chosen in interval.Probability iscomputedasa standardunigram probability For computing Kneser–Ney probabilities, the following dis-count is used: (1) as suggested in [2]. B. Kneser–Ney Smoothing The experimental results show 1) Smoothing methods are able to greatly improve the accuracy of Naive Bayes for short text classi-fication although they can only slightly help for normal documents as shown in [2]. Among the four smoothing methods, Absolute Discounting (AD) and Two-stage (TS) perform the best. The accu-

$\begingroup$ When using laplace smoothing with naive bayes, do I have to add the value 1 to all my probabilities, or just probabilities with the value of 0? $\endgroup$ – link Apr 9 '17 at 22:50 $\begingroup$ Yes I read your question but it doesn't make sense as written. $\endgroup$ – Michael R. Chernick Apr 9 '17 at 22:52 2.2 Absolute discounting Absolutediscounting(Neyetal.,1994) onwhich KN smoothing is based tries to generalize bet-ter to unseen data by subtracting a discount from each seen n-gram's count and distributing the sub-tracted discounts to unseen n-grams. For now, we assume that the discount is a constant D , so that the smoothed counts are c (u w ) = 8 >><

For example, manufacturing must plan production on a day to day basis to meet customer orders, while purchasing needs to know how to align supplier deliveries with the production schedules.

6 k vs 20f

  • Memphis shades switchback
  • How to post ads on kijiji in different locations
  • Line 5 dmv eye test ohio

In the process of obtaining values for the model parameters, this paper presents an improvement over the smoothing technique earlier suggested. Taghva et al. (2005), in the process of applying HMMs to the task of address extraction used absolute discounting to smooth emission probabilities. They used the method proposed by Borkar et al., (2001). Absolute discounting involves subtracting a fixed discount, D, from each nonzero count, an redistributing this probability mass to N-grams with zero counts. We implement absolute discounting using an interpolated model: Kneser-Ney smoothing combines notions of discounting with a backoff model. Here is an algorithm for bigram smoothing:

The reason this is called “exponential smoothing” is because each increment in the past is decreased by (I – 0′), as shown below: Therefore, the exponents 0, I, 2, 3 … , and so on give this method its name. Exponential smoothing is the most commonly used of all forecasting techniques.

-gram models of language cope with rare and unseen sequences by using smoothing methods, such as interpolation or absolute discounting (Chen & Goodman, 1996). Neural network models, however, have no notion of discrete counts, and instead use distributed representations to combat the curse of dimensionality (Bengio et al., 2003). Despite the ... Absolute beginners might bene t from reading [17], which provides an elementary introduction to the eld, before the present tutorial. 1.2 Organisation of the tutorial The rest of this paper is organised as follows. In Section 2, we present hidden Markov models and the associated Bayesian recursions for the ltering and smoothing distributions. Sep 21, 2016 · In the following code, I'm trying to compute the probability of a tri-gram according to Knesr-Kney smoothing method based on fixed discount. I go through the important papers describing Knesr-Kney ...

.

Absolute discounting involves subtracting a fixed discount, D, from each nonzero count, an redistributing this probability mass to N-grams with zero counts. We implement absolute discounting using an interpolated model: Kneser-Ney smoothing combines notions of discounting with a backoff model. Here is an algorithm for bigram smoothing: Absolute Discounting For each word, count the number of bigram typesit compl Save ourselvessome time and just subtract 0.75 (or some d) Maybe have a separate value of d for verylow counts

  • For this choice of γ i, when T is the unigram distribution, the expectation corresponds to absolute discounting; whereas if T i = distinct (∙, i) ∑ v ∈ V % distinct (∙, v) and we replace both the input and output words, it corresponds to bigram Kneser-Ney smoothing.
  • Jun 07, 2018 · Exponential smoothing is a way to smooth out data for presentations or to make forecasts. It’s usually used for finance and economics. If you have a time series with a clear pattern, you could use moving averages — but if you don’t have a clear pattern you can use exponential smoothing to forecast.
  • model. For example, Jelinek-Mercer, Dirichlet, Absolute discount (Zhai and Lafferty, 2001) and Two-stage smoothing (Zhai and Lafferty, 2002) are all based on this strategy. In document clustering, TF-IDF score is often used as the dimension values of document vectors. The effect of TF-IDF scheme is roughly equivalent to the background model smoothing.
  • Kneser-Ney Smoothing Currently most popular smoothing method Combines { absolute discounting { considers diversity of predicted words for back-o { considers diversity of histories for lower order n-gram models { interpolated version: always add in back-o probabilities PK EMNLP 17 January 2008 21 Perplexity for di erent language models
  • When forecast errors occur in a normally distributed pattern, the ratio of the mean absolute deviation to the standard deviation is 2 to 1, or 2 x MAD = 1 standard deviation. True MAD statistics can be used to generate tracking signals.

Intro to the SRI Language Modeling toolkit. This page is intended to be a quick and simple introduction to the SRI language modeling toolkit. The full documentation (such as any exists) consists of man pages available from the main SRILM web page. Ricardian Equivalence¶. Robert Barro; Ricardian equivalence implies that the timing of taxes is irrelevant on household consumption choices. A change in current taxes, exactly offset in present-value terms by an equal and opposite change in future taxes will have no effect on the optimal choices of \(C_1\) and \(C_2\). .

Absolute-Discounting. To retain a valid probability distribution (i.e. one that sums to one) we must remove some probability mass from the MLE to use for n-grams that were not seen in the corpus. Absolute discounting does this by subtracting a fixed number D from all n-gram counts. The adjusted count of an n-gram is . Interpolation

absolute discounting example. how to prove you have a proper probability distribution. Smoothing: examples, proofs, implementation. Good-Turing smoothing tricks. representing huge models efficiently. A shortcoming of absolute discounting is that it requires the assumption of a fixed vocabulary size V. What can be done to mitigate this problem ...

|

Indie classical music definition

The reason this is called “exponential smoothing” is because each increment in the past is decreased by (I – 0′), as shown below: Therefore, the exponents 0, I, 2, 3 … , and so on give this method its name. Exponential smoothing is the most commonly used of all forecasting techniques. This example teaches you how to apply exponential smoothing to a time series in Excel. Exponential smoothing is used to smooth out irregularities (peaks and valleys) to easily recognize trends. 1. First, let's take a look at our time series. Smoothing methods – Provide the same estimate for all unseen (or rare) n-grams with the same prefix – Make use only of the raw frequency of an n-gram ! But there is an additional source of knowledge we can draw on --- the n-gram “hierarchy” – If there are no examples of a particular trigram,w n-2w n-1w n, to compute P(w n|w n-2w

or another for smoothing, and the smoothing effect tends to be mixed with that of other heuristic techniques. There has been no direct evaluation of different smoothing methods, and it is unclear how the retrieval performance is affected by the choice of a smoothing method and its parameters. In this paper, we study the problem of language model Smoothing ! Need better estimators than MLE for rare events ! Approach – Somewhat decrease the probability of previously seen events, so that there is a little bit of probability mass left over for previously unseen events » Smoothing » Discounting methods Add-one smoothing ! Add one to all of the counts before normalizing Jan 25, 2011 · Exponential Smoothing Forecaset with a = .3 Sign up for The SCM Professional Newsletter Valuable supply chain research and the latest industry news, delivered free to your inbox. Absolute-Discounting. To retain a valid probability distribution (i.e. one that sums to one) we must remove some probability mass from the MLE to use for n-grams that were not seen in the corpus. Absolute discounting does this by subtracting a fixed number D from all n-gram counts. The adjusted count of an n-gram is . Interpolation

How much is a catalytic converter worth

Sapne me sona gift milna

Margo and marlo wilson twins

Sugarhouse casino sign in
Jan 18, 2014 · This smoothing method is most commonly applied in an interpolated form, 1 and this is the form that I’ll present today. Kneser-Ney evolved from absolute-discounting interpolation, which makes use of both higher-order (i.e., higher- n) and lower-order language models, reallocating some probability mass from 4-grams...
Sunpower com login
Data science bootcamp without degree

Colt new frontier 3rd generation
Odoo 10 accounting documentation

Long and short i sounds
Muscle groups anatomy

Masterchef junior season 4 episode 3

Ho scale train track

Discord mass kick

example, historic book (cost) values of assets are not generally relevant to future pension liabilities. Fair pricing of assets and liabilities should be consistent by virtue of the no-arbitrage principle. Smoothing asset prices may arguably distort the comparison of asset and liability cash flows and the measurement of the unfunded liability. or another for smoothing, and the smoothing effect tends to be mixed with that of other heuristic techniques. There has been no direct evaluation of different smoothing methods, and it is unclear how the retrieval performance is affected by the choice of a smoothing method and its parameters. In this paper, we study the problem of language model

Jun 07, 2018 · Exponential smoothing is a way to smooth out data for presentations or to make forecasts. It’s usually used for finance and economics. If you have a time series with a clear pattern, you could use moving averages — but if you don’t have a clear pattern you can use exponential smoothing to forecast. Exponential Smoothing with an Adaptive Response Rate D. W. TRIGG and A. G. LEACH Kodak Ltd. A modification is proposed to forecasting systems employing exponential smoothing whereby the response rate is varied and made to depend on the value of a tracking signal., In a simple system, this is equivalent to varying oz the .